Full Solution Time: 3 Hours **ASSIGNTMENT PAPER 5** Section-A **1.** (C) 9 **2.** (D) = **3.** (C) $\sqrt{a^2 + b^2}$ **4.** (D) 28 **5.** (B) 5 **6.** (D) 4 **7.** 360 **8.** $-\frac{1}{2}$ **9.** Unique solution **10.** 0 **11.** Circle **12.** $\frac{\pi r^2 \alpha}{360}$ **13.** True **14.** False **15.** True **16.** False **17.** 1 **18.** 2 **19.** Sridharacharya **20.** 0.37 **21.** (b) $\frac{1}{sec\theta}$ $\frac{1}{cosec \theta}$ **23.** (b) 2π*r*h **24.** (a) 2π*r*(*r* + *h*) **22.** (a) Section-B **25.** $85 = 17 \times 5$ $136 = 8 \times 17 = 2^3 \times 17$ erc HCF (85, 136) = 17LCM (85, 136) = $2^3 \times 5 \times 17$ $= 8 \times 85$ = 680**26.** Let 2x + 3y = 13....(1) and 4x + 5y = 23....(2) From (1) 2x + 3y = 13 $\therefore 2x = 13 - 3y$ $\therefore x = \frac{13 - 3y}{2}$ Put in equation (2) $\therefore 4 \left(\frac{13-3y}{2}\right) + 5y = 23$ $\therefore 2(13 - 3y) + 5y = 23$ $\therefore 26 - 6y + 5y = 23$ $\therefore -y = 23 - 26$ $\therefore -y = -3$ $\therefore y = 3$ From (3) $x = \frac{13 - 3(3)}{2}$ $= \frac{13-9}{2}$ $= \frac{4}{2}$ = x = 2 $\therefore x = 2, y = 3$

LIBERTY PAPER SET

STD. 10 : Mathematics (Standard) [N-012(E)]

27. Suppose, the present age of Rohan = x year

The present age of mother = (x + 26) years

After 3 years,

Rohan's age = (x + 3) and his mother's age will

(x + 26 + 3) = (x + 29) years

According to the condition,

 \therefore (x + 3) (x + 29) = 360 $\therefore x^2 + 29x + 3x + 87 - 360 = 0$ $\therefore x^2 + 32x - 273 = 0$ $x^2 + 39x - 7x - 273 = 0$ x(x + 39) - 7(x + 39) = 0(x + 39) (x - 7) = 0x + 39 = 0 OR x - 7 = 0x = -39OR x = 7but x is Rohan's age so negative is not possible $x \neq -39$ x = 7 years Rohan's Present age is 7 years and his mother's present age = x + 26 = 7 + 26 = 33 years **28.** Here $6x^2 - 13x + 6 = 0$ compare with $ax^2 + bx + c = 0$ a = 6, b = -13, c = 6Discriminant = $b^2 - 4ac$ $= (-13)^2 - 4 (6) (6)$ = 169 - 144= 25 > 0

... The given quadratic equation has two distinct, real and rational roots.

29. The number of cotton plants in the 1^{st} , 2^{nd} , 3^{rd} , ..., rows are : 23, 21, 19, ..., 5

In the form of AP :

$$a = 23, d = 21 - 23 = -2, a_n = 5$$

Now, $a_n = a + (n - 1)d$
 $\therefore 5 = 23 + (n - 1) (-2)$
 $\therefore 5 - 23 = (n - 1) (-2)$
 $\therefore \frac{-18}{-2} = n - 1$
 $\therefore n - 1 = 9$
 $\therefore n = 10$

So, there are 10 rows in the agricultural field.

30. $5 cos^2 60^\circ + 4 sec^2 30^\circ - tan^2 45^\circ$ $sin^2 30^\circ + cos^2 30^\circ$ $=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$ $=\frac{5 \times \frac{1}{4} + 4 \times \frac{4}{3} - 1}{\frac{1}{4} + \frac{3}{4}}$ $=\frac{\frac{5}{4} + \frac{16}{3} - 1}{\frac{1+3}{2}}$ $\frac{15+64-12}{12}$ $\frac{4}{4}$ 67 $=\frac{12}{1}$ $=\frac{67}{12}$ **31.** LHS = $(sin A + cosec A)^2 + (cos A + sec A)^2$ $= sin^{2} A + 2 sin A cosec A + cosec^{2} A + cos^{2} A + 2 cos A sec^{2} A + sec^{2} A$ $= sin^{2} A + cos^{2} A + 2 sin A cosec A + 2 cos A sec A + cosec^{2} A + sec^{2} A$ $= 1 + 2(1) + 2(1) + 1 + \cot^{2} A + 1 + \tan^{2} A$ $= 1 + 2 + 2 + 1 + cot^2 A + 1 + tan^2 A$ $= 7 + tan^2 \mathbf{A} + cot^2 \mathbf{A}$ = RHS 32. 0 5 _{ст} Α Ρ 4 cm PA is the tangent to the O-centred circle and P is the tangent PA = 4 cm, OA = 5 cm

In \triangle OPA; $\angle P = 90^{\circ}$ (Theorem : 10.1)

- $\therefore OP^2 + PA^2 = OA^2$
- :. $OP^2 = OA^2 PA^2 = (5)^2 (4)^2 = 25 16$
- $\therefore OP^2 = 9$
- \therefore OP = 3 cm

Hence, the radius of the circle is 3 cm.

Hemisphere

d = 5.5 mm $r = \frac{5}{2} = 2.5 \text{ mm}$ $\therefore r = \frac{5}{2} = 2.5 \text{ mm}$

Height of cylinder h = Length of capsule $-2 \times \text{Radius of hemisphere}$

$$\therefore h = 14 - (2 \times 2.5)$$
$$\therefore h = 14 - 5$$

$$\therefore h = 9 \text{ mm}$$

Surface area of capsule

= CSA of cylinder + 2 × CSA of hemisphere = $2\pi rh + 2 \times 2\pi r^2$ = $2\pi r (h + 2r)$ = $2 \times \frac{22}{7} \times 2.5 \times [9 + 2(2.5)]$ = $2 \times \frac{22}{7} \times 2.5 \times (9 + 5)$ = $5 \times \frac{22}{7} \times 14$ = $5 \times 22 \times 2$ = 220 mm²

- \therefore l = the lower limit of the modal calss = 40
 - h = class size = 15
 - f_1 = the frequency of modal class = 7
 - f_0 = the frequency of modal class preceding the modal class = 3
 - f_2 = the frequency of the class succeeding the modal class = 6

Mode
$$Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

 $\therefore Z = 40 + \left(\frac{7 - 3}{2(7) - 3 - 6}\right) \times 15$
 $\therefore Z = 40 + \frac{4 \times 15}{5}$
 $\therefore Z = 40 + 12$
 $\therefore Z = 52$
We have, $\overline{x} = a + \frac{\Sigma f_i u_i}{\Sigma f_i} \times h$
 $= 50 + \frac{-36}{35} \times 10$
 $= 50 - \frac{36 \times 10}{7 \times 5}$
 $= 50 - \frac{36 \times 2}{7}$
 $= 50 - 10.28$
 $\overline{x} = 39.72$

35.

36. Here total number of cards = 52

- (i) Suppose A be the event "the card is a black card"
 - \therefore The number of black cards = 13
 - \therefore The number of outcomes favourable to A = 13

$$\therefore P(A) = \frac{13}{52} = \frac{1}{4}$$

- (ii) Suppose B be the event "the card is a red face card"
 - \therefore The number of red face cards = 6
 - \therefore The number of outcomes favourable to B = 6

:. P (B) =
$$\frac{6}{52} = \frac{3}{26}$$

- **37.** There are only lemon-flavoured desserts in one bag. If we take the number of lemon flavoured sweets = n, then the total number of results of the experiment is = n. But the number of orange flavoured desserts = 0.
 - (i) Suppose, the selected dersert has an orange flavour, let's call that event A,

$$P(E) = \frac{\text{Number of dessert to taste orange}}{\text{The total number of results from the experiment}}$$

$$\therefore P(A) = \frac{0}{n}$$

$$\therefore P(A) = 0$$
(ii) Suppose, the chosen dessert tastes like lemon, let

et's call that event B, (11) Suppo ose,

Number of desserts to taste lemon

- P(B) = The total number of results from the experiment
 - $\therefore P(B) = \frac{n}{n}$
 - $\therefore P(B) = 1$

Section-C

38. Here P (x) = $6x^2 - 13x + 6$

compare with $P(x) = ax^2 + bx + c$

$$a = 6, b = -13, c = 6$$

$$\alpha + \beta = \frac{-b}{a} = \frac{(-13)}{6} = \frac{13}{6}$$

$$\alpha \cdot \beta = \frac{c}{a} = \frac{6}{6} = 1$$

(i) $\alpha^{2} + \beta^{2}$

 $\alpha^2 + \beta^2 = \alpha^2 + 2\alpha\beta + \beta^2 - 2\alpha\beta$

$$= (\alpha + \beta)^2 - 2\alpha\beta$$
$$= \left(\frac{13}{6}\right)^2 - 2 (1)$$
$$= \frac{169}{36} - 2$$
$$= \frac{169 - 72}{36}$$
$$\therefore \alpha^2 + \beta^2 = \frac{97}{36}$$

(ii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

 $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$
 $= \frac{97/36}{1}$
 $\therefore \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{97}{36}$
(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
 $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta}$
 $= \frac{\alpha + \beta}{\alpha\beta}$
 $= \frac{13/6}{1}$
 $\therefore \frac{1}{\alpha} + \frac{1}{\beta} = \frac{13}{6}$

39. Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be $\alpha \& \beta$.

$$\therefore \alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a} \text{ and } \alpha\beta = \frac{1}{3} = \frac{c}{a}$$
$$\therefore a = 3, \ b = -3\sqrt{2} \text{ and } c = 1$$

So, one quadratic polynomial which fits the given conditions is $3x^2 - 3\sqrt{2}x + 1$. You can check that any other quadratic polynomial that fits these conditions will be of the form $k(3x^2 - 3\sqrt{2}x + 1)$, where k is real.

Becauuse last term is 20^{th} term which is multiple of 7. \therefore 7 × 20 = 140.

a = 7, n = 20, 1 = 140
Sn =
$$\frac{n}{2}$$
 [a + 1]
 \therefore S20 = $\frac{20}{2}$ [7 + 1/2]

$$\therefore$$
 S20 = $\frac{20}{2}$ [7 + 140]

$$\therefore$$
 S20 = 1470

So, sum of first 20 multiples of 7 is 1470

41.
$$a = 5, a_n = l = 45, S_n = 400, n = __, d =$$

 $S_n = \frac{n}{2}(a + l)$
 $\therefore 400 = \frac{n}{2}(5 + 45)$
 $\therefore 800 = n \times 50$
 $\therefore n = \frac{800}{50}$
 $\therefore n = 16$
Now, $a_n = a + (n - 1)d$
 $\therefore 45 = 5 + (16 - 1)d$
 $\therefore 45 - 5 = 15d$
 $\therefore 40 = 15d$
 $\therefore d = \frac{40}{15}$
 $\therefore d = \frac{8}{3}$

42. Suppose, the ratio in which line segment joining A (-3, 10) and B (6, -8) is divided by point P (-1, 6) is $m_1 : m_2$.

Co-ordinates of point P =
$$\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

 \therefore (-1, 6) = $\left(\frac{m_1(6) + m_2(-3)}{m_1 + m_2}, \frac{m_1(-8) + m_2(10)}{m_1 + m_2}\right)$
 \therefore (-1, 6) = $\left(\frac{6m_1 - 3m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$
 \therefore (-1, 6) = $\left(\frac{6m_1 - 3m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$
 \therefore (-1, 6) = $\frac{6m_1 - 3m_2}{m_1 + m_2}$
 \therefore $-m_1 - m_2 = 6m_1 - 3m_2$
 \therefore $-m_1 - 6m_1 = -3m_2 + m_2$
 \therefore $-7m_1 = -2m_2$
 \therefore $\frac{m_1}{m_2} = \frac{2}{7}$

Hence, the point P will divide AB into a 2 : 7 ratio.

43. Given : A circle with centre O, a point P lying outside the circle with two tangents PQ, QR on the circle from P. To prove : PQ = PR

Figure :

Proof : Join OP, OQ and OR. Then \angle OQP and \angle ORP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OQP and ORP,

OQ = OR (Radii of the same circle)

OP = OP (Common)

 $\angle OQP = \angle ORP$ (Right angle)

Therefore, $\Delta \text{ OQP} \cong \Delta \text{ ORP}$ (RHS)

This gives, PQ = PR (CPCT)

44. Let the sides AB, BC, CD and DA of the quadrilateral ABCD touch the O centric circle at points P, Q, R and S respectively.

...(4)

:
$$AP = AS$$
 ...(1)
 $BP = BQ$...(2)
 $CR = CQ$...(3)

$$DR = DS$$

Add equation (1), (2), (3) and (4)

AP + BP + CR + DR = AS + BQ + CQ + DS

 $\therefore (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$

 $\therefore AB + CD = AD + BC$

45. $\theta = 115^{\circ}$ r =length of blade = 25 cm Area of minor sector = $\frac{\pi r^2 \theta}{2\pi r^2}$ 360 $= \frac{22 \times 25 \times 25}{115} \times 115$ 7×360 $= \frac{1581250}{2520}$ $=\frac{158125}{252}$ cm² : Area swept by 2 blades = $2 \times \text{Area of minor sector}$ $= 2 \times \frac{158125}{252}$ $=\frac{158125}{126}$ cm² **46.** Total cards in deck = 52A : card is an Ace = 4B : card is not an Ace = 48C : card is Red colour Ace = 2We have formula, No. of possible outcomes for given event P(E) =Total outcomes So, $P(A) = \frac{4}{52} = \frac{4}{4 \times 13} = \frac{1}{13}$ $P(B) = \frac{48}{52} = \frac{12 \times 4}{13 \times 4} = \frac{12}{13}$ $P(C) = \frac{2}{52} = \frac{2 \times 1}{13 \times 4} = \frac{1}{26}$ Section-D **47.** Let, correct questions = xWrong question = yCondition 1 : 3x - y = 40...(1) Condition 2 : 4x - 2y = 50...(2) From eqn (1) y = 3x - 40...(3) Put value of (3) in (2), 4x - 2(3x - 40) = 50 $\therefore 4x - 6x + 80 = 50$ $\therefore -2x = 50 - 80$ $\therefore -2x = -30$ $\therefore -x = \frac{-30}{2}$ $\therefore x = 15$ Put x = 15 in (3), y = 3(15) - 40= 45 - 40y = 5 Total question = x + y= 15 + 5= 20

 \therefore Total question in exam = 20

48. Suppose, the large number is x and the smaller number is y. $\therefore x - y = 26$...(1) x = 3y...(2) Put value of equation (2) in equation (1), x - y = 26 $\therefore 3y - y = 26$ $\therefore 2y = 26$ $\therefore v = 13$ Put y = 13 in equation (2), x = 3y $\therefore x = 3 \times 13$ $\therefore x = 39$ Therefore, the numbers are 39 and 13. D C **49.** (i) $\angle DOC + \angle BOC = 180^{\circ}$ 50° $\therefore \angle DOC + 110^\circ = 180^\circ$ $\therefore \angle DOC = 180^{\circ} - 110^{\circ}$ C 110° $\therefore \angle DOC = 70^{\circ}$ In \triangle ODC, \angle CDO + \angle DCO + \angle DOC = 180° $\therefore 50^\circ + \angle DCO + 70^\circ = 180^\circ$ В $\therefore 120^\circ + \angle DCO = 180^\circ$ $\therefore \angle DCO = 180^{\circ} - 120^{\circ}$ $\therefore \angle DCO = 60^{\circ}$ Hence, $\angle DCO = 70^{\circ}$ and $\angle DCO = 60^{\circ}$ (ii) Tower 8 m Pole Q 30 m 5 m Shadow Shadow

Here, in \triangle PQR, PQ is a pole and QR is a shadow of the pole.

 \therefore PQ = 8 m and QR = 5 m

In Δ XYZ, XY is a tower and YZ is a shadow of the tower.

$$\therefore$$
 YZ = 30 m

The length of both shadows are measured at a same time, so $\angle R$ and $\angle Z$ are the angles of elevation of the sun.

 $\therefore \angle R = \angle Z$

In Δ PQR and Δ XYZ,

 $\angle R = \angle Z \text{ and } \angle Q = \angle Y \quad (\text{Right angles})$ $\therefore \Delta PQR \sim \Delta XYZ \quad (\text{AA criterion})$ $\therefore \frac{PQ}{XY} = \frac{QR}{YZ}$ $\therefore \frac{8}{XY} = \frac{5}{30}$ $\therefore XY = \frac{8 \times 30}{5}$ $\therefore XY = 48 \text{ m}$

Therefore, the height of the tower = 48 m.

50. Given : E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. To Prove : \triangle ABE ~ \triangle CFB

Here, the location of the A and B balloons, XY = height, YQ ground and XP is the horizontal line from the girl's eyes. Take, AM \perp XP, M is the point on XP.

Therefore, in \triangle AMX; \angle AMX = 90° and \angle AXM = 60°,

In \triangle BPX, \angle BPX = 90°, \angle BXP = 30°,

PQ = XY = 1.2 m, BQ = 88.2 m

 \therefore AM = BP = BQ - PQ = 88.2 - 1.2 = 87 m

In \triangle AMX; \angle AMX = 90°

 $\therefore \tan 60^\circ = \frac{AM}{XM}$ $\therefore \sqrt{3} = \frac{87}{XM}$ $\therefore XM = \frac{87}{\sqrt{3}}$ $\therefore XM = 29\sqrt{3}$ In \triangle BPX; \angle BPX = 90° $\therefore \tan 30^\circ = \frac{BP}{XP}$ $\therefore \frac{1}{\sqrt{3}} = \frac{87}{XP}$ $\therefore XP = 87\sqrt{3}$ Now, MP = XP - XM = 87\sqrt{3} - 29\sqrt{3} $= 58\sqrt{3} \text{ m}$ $\therefore AB = 58\sqrt{3} \text{ m}$

Hence, the distance travelled by balloon is $58\sqrt{3}$ m.

ert

15.5 cm

52. Hemisphere Cone

r = 3.5 cm r = 3.5 cmh = 12 cml = 12.5 cm

Total height of the toy = 15.5 cm

Height of cone + Radius of hemisphere = 15.5

$$\therefore h + 3.5 = 15.5$$

$$\therefore h = 12 \text{ cm}$$

Now,
$$l = \sqrt{r^2 + h^2}$$

= $\sqrt{(3.5)^2 + (12)^2}$
= $\sqrt{12.25 + 144}$
 $l = \sqrt{156.25}$
 $\therefore l = 12.5 \text{ cm}$

Total surface area of toy

= CSA of hemisphere + CSA of cone = $2\pi r^2 + \pi r l$ = $\pi r (2r + l)$ = $\frac{22}{7} \times 3.5 \times [2(3.5) + 12.5]$ = $22 \times 0.5 \times (7 + 12.5)$ = 11×19.5 = 214.5 cm^2

53.

Cylinder Hemisphere $d = 2.8 \, \mathrm{cm}$ $d = 2.8 \, \mathrm{cm}$ $\therefore r = 1.4 \text{ cm}$ $\therefore r = 1.4 \text{ cm}$ h = Totat length - 2rHeight of cylinder $\therefore h = 5 - 2(1.4)$: h = 5 - 2.8 $\therefore h = 2.2 \text{ cm}$ 1.4 cm 2 2.2 cm 5 cm ←2.8 cm→ 1.4 cm

 \therefore Volume of 45 gulabjamun = 45 × Volume of one gulabjamun

= 45 × (Volume of cylinder + 2 × Volume hemisphere)
= 45 × (πr²h + 2 ×
$$\frac{2}{3}$$
 πr³)
= 45 × (πr²h + $\frac{4}{3}$ πr³)
= 45 × πr² × (h + $\frac{4}{3}$ r)
= 45 × $\frac{22}{7}$ × (1.4)² × (2.2 + $\frac{4 × 1.4}{3}$)
= 45 × $\frac{22}{7}$ × 1.96 × ($\frac{6.6 + 5.6}{3}$)
= 45 × 22 × 0.28 × $\frac{12.2}{3}$
= 15 × 22 × 0.28 × 12.2
= 1127.28 cm³
∴ Volume of sugar syrup = 30% of volume
= 1127.28 × $\frac{30}{100}$

 $= 338.184 \text{ cm}^3$

 $= 338 \text{ cm}^3 \text{(Approx)}$

Class intervals	Frequency	Cumulative frequency
0 - 100	2	2
100 - 200	5	7
200 - 300	f_{I}	$7 + f_1$
300 - 400	12	$19 + f_{I}$
400 - 500	17	$36 + f_{I}$
500 - 600	20	$56 + f_{I}$
600 - 700	f_2	$56 + f_1 + f_2$
700 - 800	9	$65 + f_1 + f_2$
800 - 900	7	$72 + f_1 + f_2$
900 - 1000	4	$76 + f_1 + f_2$

It is given that n = 100

$$\frac{n}{2} = \frac{100}{2} = 50$$

 $\therefore 76 + f_1 + f_2 = 100$
 $\therefore f_1 + f_2 = 24$
The median is 525, which lies in the class 500 - 600.
 $l = 500$
 $cf = 36 + f_1$
 $f = 20$
 $h = 100$
Median $M = l + \left(\frac{n}{2} - cf}{f}\right) \times h$
 $\therefore 525 = 500 + \left(\frac{50 - 36 - f_1}{20}\right) \times 100$
 $\therefore 525 - 500 = (14 - f_1)5$
 $\therefore \frac{25}{5} = 14 - f_1$
 $\therefore f_1 = 14 - 5$
 $\therefore f_1 = 9$
Now, $f_1 + f_2 = 24$
 $\therefore 9 + f_2 = 24$
 $\therefore f_2 = 15$